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Abstract. Solar active regions are driven dissipative dynamical systems. The tur-
bulent convection zone forces new magnetic flux tubes to rise above the photosphere
and shuffles the magnetic fields which are already above the photosphere. The driven
3D active region responds to the driver with the formation of Thin Current Sheets
in all scales and releases impulsively energy, when special thresholds are met, on
the form of nano-, micro-, flares and large scale coronal mass ejections. It has been
documented that active regions form self similar structures with area Probability
Distribution Functions (PDF’s) following power laws and with fractal dimensions
ranging from 1.2 − 1.7. The energy release on the other hand follows a specific en-
ergy distribution law f(ET ) ∼ E−a

T
, where a ∼ 1.6 − 1.8 and ET is the total energy

released. A possible explanation for the statistical properties of the magnetogrms
and the energy release by the active region is that the magnetic field formation fol-
lows rules analogous to percolating models, and the 3D magnetic fields above the
photosphere reach a Self Organized Critical (SOC) state. The implications of
these findings on the acceleration of energetic particles during impulsive phenomena
will briefly be outlined.

1 Active Regions as driven non linear systems

The most energetic phenomena above the solar surface are associated with
“active regions (AR)”. The 3D AR is a theater of intense activity of various
(spatiotemporal) scales. The 3D AR has a visual boundary at the photosphere
(although its physical boundary, as we will see in the the next section, is inside
the turbulent convection zone), and is subject to external forcing caused by
the flux emergence from the solar interior and by the shuffling motions at the
photosphere.

Our main goal in this article is to show that a variety of well known so-
lar phenomena (e.g. coronal heating, flares, CME’s, particle acceleration etc)
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can be understood in a unified manner by considering the solar active re-
gions as externally (sub-photospherically) driven non linear systems. There
are many well known statistical observations which suggest that ARs are far
from equilibrium: (1) The magnetic structures at the solar photosphere estab-
lish a fractal form and have power law size distributions, (2) the explosive
phenomena (i.e nano-flares, micro-flares, flares and CME’s) follow a very
stable power law frequency distribution (3) the high energy particles, ac-
celerated during solar flares, establish before leaving the accelerator, a power
law energy distribution (see Fig. 1).

Fig. 1. (a) Statistical properties of flares (see [4]), (b) statistical properties of Eller-
man Bombs (see [17]), (c) statistical properties of the kinetic energy of CMEs (Cour-
tesy of A. Vourlidas).

The main question addressed in this review then is: How an active region
achieves all these statistical regularities? We argue that the formation of AR’s
follows laws analogous to well known percolation models and simultaneously
drives the extrapolated 3D magnetic structures above the photosphere, lead-
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ing the entire 3D structure to a Self Organized Critical (SOC) state. The
coupling of two well known mechanisms of complex systems (per-
colation (as the driver) and self organized criticality for the energy
dissipation) are behind all the observed regularities recorded on the
data.

2 Active region formation: A percolating driver?

We can learn a lot about the sub-photospheric activity by “reading” carefully
the magnetograms. Both full disk and more detail magnetograms around spe-
cific AR are extremely useful tools (see Fig. 2). Two of their striking properties
are found in the Probability Distribution Function (PDF) of their sizes and
their fractal properties.

Fig. 2. (a) Sunspots in a full disk magnetogram, (b) Magnetogram around an active
region

Numerous observational studies have investigated the statistical proper-
ties of active regions, using full-disc magnetograms. These studies have ex-
amined among other parameters the size distribution of active regions, and
their fractal dimension: The size distribution function of the newly formed
active regions exhibits a well defined power law with index ≈ −1.94 and ac-
tive regions cover only a small fraction of the solar surface (around ∼ 8%)
[13]. The fractal dimension of the active regions has been studied using high-
resolution magnetograms by [9], and more recently by [30]. These authors
found, using not always the same method, a fractal dimension DF in the
range 1.2 < DF < 1.7. Fractal dimensions in solar magnetic fields are typi-
cally calculated using the box-counting technique. The values of the fractal
dimension depends on whether the structures themselves or just their bound-
aries are box counted. The analysis has been pursued even further using the
concepts of multi-fractality. It is well known that an AR includes multiple
types of structures such as different classes of sunspots, plages, emerging flux
sub-regions, etc. The physics behind the formation and evolution of each of
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these structures is not believed to be the same, so the impact and the fi-
nal outcome of convection zone turbulence in each of these configurations
should not be the same. Numerous other tools have been used to uncover
aspects of the complex behavior ”mapped” by the convection zone on the
photospheric boundary, e.g. generalized correlation dimension, structure for-
mations, wavelet power spectrum [20].

Theoretical studies on the formation of AR can be divided in two main
categories: (1) The evolution of one or two slender and isolated flux tubes (see
recent articles on this topic [3, 43, 6, 2, 16]), (2) using standard percolation
techniques. We stress the second method here since we place special emphasis
on the complexity of AR.

A percolation model was proposed to simulate the formation and evolution
of active regions at the photosphere in [49, 41]. In this model, the evolution of
the magnetograms is followed by reducing all the complicated convection zone
dynamics into three dimensionless parameters. The emergence and evolution
of magnetic flux on the solar surface in the 2-D cellular automaton (CA)
which is probabilistic and is based on the competition between two “fighting”
tendencies: stimulated or spontaneous emergence of new magnetic flux,
and the disappearance of flux due to diffusion (i.e. dilution below observable
limits), together with random motion of the flux tubes on the solar surface
(this processes mimics the shuffling). This percolation model explains the
observed size distribution of active regions and their fractal characteristics
[30, 45]. It was later used for the reconstruction of 3-D active regions using
the force free approximation and many of the observational details reported
in [46] were reproduced [14].

3 Are AR in a self organized critical state?

3.1 3-D extrapolation of magnetic field lines and the formation of
Unstable Current Sheets

The energy needed to power solar flares is provided by photospheric and sub-
photospheric motions and is stored in non-potential coronal magnetic fields.
Since the magnetic Reynolds number is very large in the solar corona, MHD
theory states that magnetic energy can only be released in localized
regions where the magnetic field forms small scale structures and
steep gradients, i.e. in thin current sheets (TCS).

Numerous articles (see recent reviews [11, 27]) are devoted to the analysis
of magnetic topologies which can host TCSs. The main trend of current re-
search in this area is to find ways to realistically reconstruct the 3-D magnetic
field topology in the corona based on the available magnetograms and large-
scale plasma motions at the photosphere. A realistic magnetic field generates
many “poles and sources” [27] and naturally has a relatively large number of
TCSs. We feel that detailed representations inside the 3D AR of the TCS’s
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are mathematically appealing only for relatively simple magnetic topologies
(dipoles, quadrupoles, symmetric magnetic arcades [5]). When such simple
topologies are broken in the photosphere, for example due to large-scale sub-
Alfvénic photospheric motions or the emergence of new magnetic flux that
disturbs the corona, such tools may be less useful. All these constraints re-
strict our ability to reconstruct fully the dynamically evolving magnetic field
of an active region (and it is not clear that an exact reconstruction will ever
be possible).

Many of the widely used magnetograms measure only the line of sight
component of the magnetic field. The component of the magnetic field vertical
to the surface matches the measured magnetic field only at the center of
the disk and becomes increasingly questionable as the limb is approached.
Extrapolating the measured magnetic field is relatively simple if we assume
that the magnetic field is in force-free equilibrium:

∇× B = α(x)B (1)

where the function α(x) is arbitrary except for the requirement B·∇α(x) = 0,
in order to preserve ∇·B = 0. Eq. (1) is non-linear since both α(x) and B(x)
are unknown. We can simplify the analysis of Eq. 1 when α=constant. The
solution is easier still when α = 0, which is equivalent to assuming the coronal
fields to contain no currents (potential field), hence no free energy, and thus
they are uninteresting. A variety of techniques have been developed for the

Fig. 3. Force free extrapolation of magnetograms and reconstruction of the magnetic
fields inside an AR

reconstruction of the magnetic field lines above the photosphere and the search
for TCSs [27]. It is beyond the scope of this article to discuss these techniques
in detail. For instructive purposes, we use the simplest method available, a
linear force free extrapolation, and search for “sharp” magnetic discontinuities
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in the extrapolated magnetic fields as in Vlahos and Georgoulis [46]: They
use an observed active-region vector magnetogram and then: (i) resolve the
intrinsic azimuthal ambiguity of 180o [18], and (ii) find the best-fit value
αAR of the force-free parameter for the entire active region, by minimizing
the difference between the extrapolated and the ambiguity-resolved observed
horizontal field (the “minimum residual” method of [21]). They perform a
linear force-free extrapolation [1] to determine the three-dimensional magnetic
field in the active region (see Fig. 3). Although it is known that magnetic fields
at the photosphere are not force-free [19], they argue that a linear force-free
approximation is suitable for the statistical purposes of their study.

Two different selection criteria were used in order to identify potentially
unstable locations (identified as the afore-mentioned TCSs) [46]. These are
(i) the Parker angle, and (ii) the total magnetic field gradient. The angular
difference ∆ψ between two adjacent magnetic field vectors, B1 and B2, is
given by ∆ψ = cos−1[B1 ·B2/(B1B2)]. Assuming a cubic grid, they estimated
six different angles at any given location, one for each closest neighbors. The
location is considered potentially unstable if at least one ∆ψi > ∆ψc, where
i ≡ {1, 6} and ∆ψc = 14o. The critical value ∆ψc is the Parker angle which, if
exceeded locally, favors tangential discontinuity formation and the triggering
of fast reconnection [37, 38]. In addition, the total magnetic field gradient
between two adjacent locations with magnetic field strengths B1 and B2 is
given by |B1 − B2|/B1. Six different gradients were calculated at any given
location. If at least one Gi > Gc, where i ≡ {1, 6} and Gc = 0.2 (an arbitrary
choice), then the location is considered potentially unstable. When a TCS
obeys one of the criteria listed above, it will be transformed to an Unstable
Current Sheet (UCS). Potentially unstable volumes are formed by the merging
of adjacent selected locations of dissipation. These volumes are given by V =
Nλ2δh, where N is the number of adjacent locations, λ is the pixel size of the
magnetogram and δh is the height step of the force-free extrapolation. The
free magnetic energy E in any volume V is given by

E =
λ2δh

2µ0

N∑

l=1

(Bff l − Bpl
)2 (2)

where Bff l and Bpl
are the linear force-free and the potential fields at location

l respectively. The assumption used is that any deviation from a potential
configuration implies a non-zero free magnetic energy which is likely to be
released if certain conditions are met. UCS are created naturally in active
regions even during their formation and the free energy available in these
unstable volumes follows a power law distribution with a well defined
exponent (Fig. 4). Vlahos and Georgoulis concluded that active regions store
energy in many unstable locations, forming UCS of all sizes (i.e. the UCS have
a self-similar structure). The UCS are fragmented and distributed inside the
global 3-D structure. Viewing the flare in the context of the UCS scenario
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Fig. 4. Typical distribution function of the total free energy in the selected volume,
on using a critical angle 14◦ [46].

presented above, we can expect, depending of the size distribution and the
scales of the UCS, to have flares of all sizes.

3.2 A Cellular Automata model for the energy release in AR

Coronal energy release observed at various wavelengths shows impulsive be-
haviour with events from flares to bright points exhibiting intermittency in
time and space. Intense X-ray flare emission typically lasts several minutes to
tens of minutes, and only a few flares are recorded in an active region that typ-
ically lives several days to several weeks. The flaring volume is small compared
to the volume of an active region, regardless of the flare size. Intermittency is
the dynamical response of a turbulent system when the triggering of the sys-
tem is the result of a critical threshold for the instability [10]. In a turbulent
system one also expects self organization, i.e. the reduction of the numer-
ous physical parameters (degrees of freedom) present in the system to a small
number of significant degrees of freedom that regulates the system’s response
to external forcing [32]. This is the reason for the success of concepts such as
Self Organized Criticality (SOC) [7, 8] in explaining the statistical behavior
of flares. Cellular Automata (CA) models typically employ one variable (the
magnetic field, vector potential, etc) and study its evolution subject to ex-
ternal perturbations. When a critical threshold is exceeded (when the
TCS becomes an UCS), parts of the configuration are unstable, and
will be restructured to re-establish stability. The rearrangement may
cause instabilities in adjacent locations, so the relaxation of the system may
proceed as an avalanche-type process. In SOC flare models [28, 29, 44] each
elementary relaxation is viewed as a single magnetic reconnection event, so
magnetic reconnection is explicitly assumed to occur with respect to a critical
threshold.
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In solar MHD an UCS disrupts either when its width becomes smaller
than a critical value [39], or when the magnetic field vector forms tangential
discontinuities exceeding a certain angle [36], or when magnetic field gradi-
ents are steep enough to trigger restructuring [40]. We noticed that a critical
threshold is involved in all cases: the first process points to the turbulent
evolution in the magnetic field configuration and the onset of anomalous re-
sistivity, while the latter two imply magnetic discontinuities caused either by
the orientation of the magnetic field vector or by changes of the magnetic field
strength. Magnetic field gradients and discontinuities imply electric currents
via Ampére’s law, so a critical magnetic shear or gradient implies a critical
electric current accumulated in the current sheet which in turn leads to the
onset of anomalous resistivity [35, 37].

One way of modeling the appearance, disappearance, and spatial organi-
zation of UCS inside a large-scale topology is with the use of the Extended
Cellular Automaton (X-CA) model [22, 23, 24]. Fig. 5 illustrates some basic
features of the X-CA model. The X-CA model has as its core a cellular au-

Fig. 5. (a) Simulated magnetogram of a photospheric active region and force-free
magnetic field-lines, extrapolated into the corona (b) Sub-critical current iso-surfaces
in space, as yielded by the X-CA model, which models a sub-volume of a coronal
active region. — (c) The same as (b), but zoomed. (d) Temporal snap-shot of the X-
CA model during a flare, showing the spatial distribution of the UCS (super-critical
current iso-surface) inside the complex active region [47].

tomaton model of the sand-pile type and is run in the state of Self-Organized
Criticality (SOC). It is extended to be fully consistent with MHD: the primary
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grid variable is the vector-potential, and the magnetic field and the current
are calculated by means of interpolation as derivatives of the vector potential
in the usual sense of MHD, guaranteeing ∇ ·B = 0 and J = (1/µ0)∇×B ev-
erywhere in the simulated 3-D volume. The electric field is defined as E = ηJ,
with η the diffusivity. The latter usually is negligibly small, but if a threshold
in the current is locally reached (|J| > Jcr), then current-driven instabilities
are assumed to occur, η becomes anomalous in turn, and the resistive electric
field locally increases drastically. These localized regions of intense electric
fields are the UCS in the X-CA model.

The X-CA model yields distributions of total energy and peak flux which
are compatible with the observations. The UCSs in the X-CA form a set
which is highly fragmented in space and time: the individual UCS are small
scale regions, varying in size, and are short-lived. They do not form in their
ensemble a simple large-scale structure, but form a fractal set with fractal
dimension roughly DF = 1.8 [47]. The individual UCS also do not usually
split into smaller UCS, but they trigger new UCSs in their neighborhood, so
that different chains of UCS travel through the active region, triggering new
side-chains of UCS on their way. It is obvious that the rules of this simulation
do not include the fragmentation of the UCS, in many ways through the
results coincide with the MHD simulations [15].

4 Active Regions as multi-scale physics laboratories

So far we have discussed very briefly: (1) the formation of an AR as it is
mapped in the magnetogram, (2) the use of the magnetogram as non-linearly
evolving driver for the 3D AR, (3) the reconstruction of the 3D AR using
simple techniques and the search for Thin Current Sheets (TCS) where energy
may be dissipated. The critical transition of a TCS to a rapidly reconnecting
structure (UCS) is essential for the 3D AR to reach a SOC state. The TCS
formed inside the AR extend from the large scales (1010 cm) which are very
unstable and rapidly fragment down to a few meters (on the order of the ion
gyro radius) where the fast reconnection ignites. We have already discovered
on all these levels enormous complexity. The main question now is: Do the
UCS remain stable and dissipate magnetic energy or are they fragmented even
further?

Onofri et al. [33] studied the nonlinear evolution of current sheets using
the 3-D incompressible and dissipative MHD equations in a slab geometry.
The nonlinear evolution of the system is characterized by the formation of
small scale structures, especially in the lateral regions of the computational
domain, and coalescence of magnetic islands in the center.

This behavior is reflected in the 3-D structure of the current (see Fig.
6), which shows that the initial equilibrium is destroyed by the formation of
current filaments, with a prevalence of small scale features. The final stage of
these simulations is a turbulent state, characterised by many spatial scales,
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Fig. 6. Current isosurfaces showing the formation of current filaments, [33]

with small structures produced by a cascade with wavelengths decreasing
with increasing distance from the current sheet. In contrast, inverse energy
transfer leads to the coalescence of magnetic islands producing the growth
of two-dimensional modes. The energy spectrum approximates a power law
with slope close to 2 at the end of the simulation [34]. Similar results have
been reported by many authors using several approximations [12, 31, 26, 42].
It is also interesting to note that similar results are reported from magnetic
fluctuations in the Earth’s magnetotail [50].

We have now created current structures on all scales and the next ques-
tion is how particles will respond to the electric fields developed at all these
scales due to the presence of enhanced resistivity at the small scales? The
problem of particle acceleration is beyond the domain of MHD theory or even
the two-fluid description of the plasmas. Only kinetic theory can follow the
evolution of the particle distribution inside a fractally distributed electric field
environment. Particle (anomalous) diffusion and the build up of non-thermal
velocity distributions in localized structures distributed inside the 3D AR was
the subject of many recent articles [47] (see also a recent review [48]).

5 Conclusions and Summary

In this review we have attempted to show that many well known solar phenom-
ena, treated separately in many recent reviews (e.g. coronal heating, flares,
CME’s and particle acceleration) are symptoms of the formation and evolu-
tion of ARs. We can now pose the question: How an AR works? We propose
here that four main steps are crucial.

• Step 1: The driver: The photospheric activity with emerging magnetic
flux and photospheric flows are the main ingredients of the driver. The
main rules of the evolution of an active region can be explained by using
a simple percolation model.

• Step 2: The 3D magnetic ”skeleton” and the storage of magnetic
energy: This is a very difficult task and remains open challenge. Simple
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forms of extrapolation show that the storage of magnetic energy is in
Thin Current Sheets (TCS) which are formed at all scales and follow very
interesting statistical regularities (Self organization of the storage of
magnetic energy).

• Step 3: Eruptions and Criticality: The energy release is possible only
when the TCS become very thin and move to the state of Unstable Current
Sheets (UCS). From small scale and confined eruptions up to very large
scales reorganization of the corona that is followed by flares and CMEs,
the eruptions are viewed here as “avalanches” coming out of a system
which is in Self Organized Critical state (SOC).

• Step 4: Particle Acceleration: The fractal distribution in 3D-space
of the energy release sites followed naturally from a space filling fractal
distribution of E-fields. Particles ”Diffuse” inside a Network of
accelerators and the ”Accelerator” is distributed over a relatively large
volume, as is the distribution of the energy release sites. How particles are
accelerated in Networks of E-fields is an interesting statistical mechan-
ics problem.

In Summary we conclude that the complexity of the magnetograms, the
formation of millions of TCS which, after passing a threshold become UCS
at sporadic places inside the AR, and the further fragmentation of all UCS
practically to all scales, play an important role in the formation of high energy
particles. Therefore in 3D ARs of all scales are active from the very large
scales (thousands of Kilometers, treated by MHD) down to meters (treated by
kinetic equations). This multi-scale and complex environment still maintains
many interesting statistical regularities which are manifested in the numerous
statistical laws recorded from the data so far.
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